Disentangled representation learning remains challenging as ground truth factors of variation do not naturally exist. To address this, we present Vocabulary Disentanglement Retrieval~(VDR), a simple yet effective retrieval-based disentanglement framework that leverages nature language as distant supervision. Our approach is built upon the widely-used bi-encoder architecture with disentanglement heads and is trained on data-text pairs that are readily available on the web or in existing datasets. This makes our approach task- and modality-agnostic with potential for a wide range of downstream applications. We conduct experiments on 16 datasets in both text-to-text and cross-modal scenarios and evaluate VDR in a zero-shot setting. With the incorporation of disentanglement heads and a minor increase in parameters, VDR achieves significant improvements over the base retriever it is built upon, with a 9% higher on NDCG@10 scores in zero-shot text-to-text retrieval and an average of 13% higher recall in cross-modal retrieval. In comparison to other baselines, VDR outperforms them in most tasks, while also improving explainability and efficiency.
translated by 谷歌翻译
In recent years, using a self-supervised learning framework to learn the general characteristics of graphs has been considered a promising paradigm for graph representation learning. The core of self-supervised learning strategies for graph neural networks lies in constructing suitable positive sample selection strategies. However, existing GNNs typically aggregate information from neighboring nodes to update node representations, leading to an over-reliance on neighboring positive samples, i.e., homophilous samples; while ignoring long-range positive samples, i.e., positive samples that are far apart on the graph but structurally equivalent samples, a problem we call "neighbor bias." This neighbor bias can reduce the generalization performance of GNNs. In this paper, we argue that the generalization properties of GNNs should be determined by combining homogeneous samples and structurally equivalent samples, which we call the "GC combination hypothesis." Therefore, we propose a topological signal-driven self-supervised method. It uses a topological information-guided structural equivalence sampling strategy. First, we extract multiscale topological features using persistent homology. Then we compute the structural equivalence of node pairs based on their topological features. In particular, we design a topological loss function to pull in non-neighboring node pairs with high structural equivalence in the representation space to alleviate neighbor bias. Finally, we use the joint training mechanism to adjust the effect of structural equivalence on the model to fit datasets with different characteristics. We conducted experiments on the node classification task across seven graph datasets. The results show that the model performance can be effectively improved using a strategy of topological signal enhancement.
translated by 谷歌翻译
Reliable and efficient validation technologies are critical for the recent development of multi-vehicle cooperation and vehicle-road-cloud integration. In this paper, we introduce our miniature experimental platform, Mixed Cloud Control Testbed (MCCT), developed based on a new notion of Mixed Digital Twin (mixedDT). Combining Mixed Reality with Digital Twin, mixedDT integrates the virtual and physical spaces into a mixed one, where physical entities coexist and interact with virtual entities via their digital counterparts. Under the framework of mixedDT, MCCT contains three major experimental platforms in the physical, virtual and mixed spaces respectively, and provides a unified access for various human-machine interfaces and external devices such as driving simulators. A cloud unit, where the mixed experimental platform is deployed, is responsible for fusing multi-platform information and assigning control instructions, contributing to synchronous operation and real-time cross-platform interaction. Particularly, MCCT allows for multi-vehicle coordination composed of different multi-source vehicles (\eg, physical vehicles, virtual vehicles and human-driven vehicles). Validations on vehicle platooning demonstrate the flexibility and scalability of MCCT.
translated by 谷歌翻译
Motivation: Enhancers are important cis-regulatory elements that regulate a wide range of biological functions and enhance the transcription of target genes. Although many state-of-the-art computational methods have been proposed in order to efficiently identify enhancers, learning globally contextual features is still one of the challenges for computational methods. Regarding the similarities between biological sequences and natural language sentences, the novel BERT-based language techniques have been applied to extracting complex contextual features in various computational biology tasks such as protein function/structure prediction. To speed up the research on enhancer identification, it is urgent to construct a BERT-based enhancer language model. Results: In this paper, we propose a multi-scale enhancer identification method (iEnhancer-ELM) based on enhancer language models, which treat enhancer sequences as natural language sentences that are composed of k-mer nucleotides. iEnhancer-ELM can extract contextual information of multi-scale k-mers with positions from raw enhancer sequences. Benefiting from the complementary information of k-mers in multi-scale, we ensemble four iEnhancer-ELM models for improving enhancer identification. The benchmark comparisons show that our model outperforms state-of-the-art methods. By the interpretable attention mechanism, we finds 30 biological patterns, where 40% (12/30) are verified by a widely used motif tool (STREME) and a popular dataset (JASPAR), demonstrating our model has a potential ability to reveal the biological mechanism of enhancer. Availability: The source code are available at https://github.com/chen-bioinfo/iEnhancer-ELM Contact: junjiechen@hit.edu.cn and junjie.chen.hit@gmail.com; Supplementary information: Supplementary data are available at Bioinformatics online.
translated by 谷歌翻译
Conventional closed-world information extraction (IE) approaches rely on human ontologies to define the scope for extraction. As a result, such approaches fall short when applied to new domains. This calls for systems that can automatically infer new types from given corpora, a task which we refer to as type discovery. To tackle this problem, we introduce the idea of type abstraction, where the model is prompted to generalize and name the type. Then we use the similarity between inferred names to induce clusters. Observing that this abstraction-based representation is often complementary to the entity/trigger token representation, we set up these two representations as two views and design our model as a co-training framework. Our experiments on multiple relation extraction and event extraction datasets consistently show the advantage of our type abstraction approach. Code available at https://github.com/raspberryice/type-discovery-abs.
translated by 谷歌翻译
Recently, neural networks have proven their impressive ability to solve partial differential equations (PDEs). Among them, Fourier neural operator (FNO) has shown success in learning solution operators for highly non-linear problems such as turbulence flow. FNO is discretization-invariant, where it can be trained on low-resolution data and generalizes to problems with high-resolution. This property is related to the low-pass filters in FNO, where only a limited number of frequency modes are selected to propagate information. However, it is still a challenge to select an appropriate number of frequency modes and training resolution for different PDEs. Too few frequency modes and low-resolution data hurt generalization, while too many frequency modes and high-resolution data are computationally expensive and lead to over-fitting. To this end, we propose Incremental Fourier Neural Operator (IFNO), which augments both the frequency modes and data resolution incrementally during training. We show that IFNO achieves better generalization (around 15% reduction on testing L2 loss) while reducing the computational cost by 35%, compared to the standard FNO. In addition, we observe that IFNO follows the behavior of implicit regularization in FNO, which explains its excellent generalization ability.
translated by 谷歌翻译
Connected and automated vehicles (CAVs) are viewed as a special kind of robots that have the potential to significantly improve the safety and efficiency of traffic. In contrast to many swarm robotics studies that are demonstrated in labs by employing a small number of robots, CAV studies aims to achieve cooperative driving of unceasing robot swarm flows. However, how to get the optimal passing order of such robot swarm flows even for a signal-free intersection is an NP-hard problem (specifically, enumerating based algorithm takes days to find the optimal solution to a 20-CAV scenario). Here, we introduce a novel cooperative driving algorithm (AlphaOrder) that combines offline deep learning and online tree searching to find a near-optimal passing order in real-time. AlphaOrder builds a pointer network model from solved scenarios and generates near-optimal passing orders instantaneously for new scenarios. Furthermore, our approach provides a general approach to managing preemptive resource sharing between swarm robotics (e.g., scheduling multiple automated guided vehicles (AGVs) and unmanned aerial vehicles (UAVs) at conflicting areas
translated by 谷歌翻译
Federated learning (FL) has achieved great success as a privacy-preserving distributed training paradigm, where many edge devices collaboratively train a machine learning model by sharing the model updates instead of the raw data with a server. However, the heterogeneous computational and communication resources of edge devices give rise to stragglers that significantly decelerate the training process. To mitigate this issue, we propose a novel FL framework named stochastic coded federated learning (SCFL) that leverages coded computing techniques. In SCFL, before the training process starts, each edge device uploads a privacy-preserving coded dataset to the server, which is generated by adding Gaussian noise to the projected local dataset. During training, the server computes gradients on the global coded dataset to compensate for the missing model updates of the straggling devices. We design a gradient aggregation scheme to ensure that the aggregated model update is an unbiased estimate of the desired global update. Moreover, this aggregation scheme enables periodical model averaging to improve the training efficiency. We characterize the tradeoff between the convergence performance and privacy guarantee of SCFL. In particular, a more noisy coded dataset provides stronger privacy protection for edge devices but results in learning performance degradation. We further develop a contract-based incentive mechanism to coordinate such a conflict. The simulation results show that SCFL learns a better model within the given time and achieves a better privacy-performance tradeoff than the baseline methods. In addition, the proposed incentive mechanism grants better training performance than the conventional Stackelberg game approach.
translated by 谷歌翻译
Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
尽管深度神经网络(DNN)最近取得了巨大进步,但它们通常容易受到对抗攻击的影响。已经做出了深入的研究工作,以改善DNN的鲁棒性;但是,大多数经验防御能力可以再次自适应攻击,理论上认证的鲁棒性受到限制,尤其是在大规模数据集上。这种脆弱性DNN的潜在根本原因是,尽管它们表现出了强大的表现力,但它们缺乏做出可靠和可靠预测的推理能力。在本文中,我们旨在集成领域知识,以使强大的学习与推理范式进行稳健的学习。特别是,我们通过推理管道(CARE)提出了一个认证的健壮学习,该学习由学习组成部分和推理组成部分组成。具体而言,我们使用一组标准DNN作为进行语义预测的学习组件,并利用概率图形模型(例如Markov Logic Networks(MLN))作为推理组件,以实现知识/逻辑推理。然而,众所周知,MLN(推理)的确切推断是#P-Complete,它限制了管道的可扩展性。为此,我们建议根据有效的期望最大化算法通过变异推断近似MLN推断。特别是,我们利用图形卷积网络(GCN)在变异推理过程中编码后分布,并更新MLN(M-step)中GCN(E-step)的参数(E-step)和知识规则的权重。我们在不同的数据集上进行了广泛的实验,并表明与最先进的基线相比,CARE的认证鲁棒性明显更高。我们还进行了不同的消融研究,以证明护理的经验鲁棒性和不同知识整合的有效性。
translated by 谷歌翻译